

P	PC鋼材の特性と種類	. 1
1	PC鋼材の特性	
2	PC鋼材の種類	
P	PC鋼材の製造工程	-
		_
P	C鋼より線の規格および仕様	2
1	日本工業規格 (JIS G 3536-2014)	_
2	フレシネー工法規格 (HTS-28)	
3	日国鉄規格	
4	内部充てん型エポキシ樹脂被覆PC鋼より線(ECFストランド)の仕様(土木学会規準 JSCE-E141-2018)	
5	ポリエチレン被覆内部充てん型エポキシ樹脂被覆PC鋼より線(PE被覆型ECFストランド)の仕様	
•	(土木学会規準 JSCE-E141-2018)	
6 7	プレグラウトPC鋼より線の仕様(土木学会規準 JSCE-E145-2013) アンボンドPC鋼より線の仕様(住友仕様)	
'		
P	PC鋼より線の荷姿	. 6
P	PC鋼より線の取り扱いについて	. 7
1	<u>運搬・保管</u>	
2	配筋前の作業および加工	
3	配筋ならびに応力導入	
	○○○○○○ ► 61 6自 田立7 日	
ľ	C鋼より線用部品	7
1,		
兼	燥り返し使用グリップの取扱いについて 1	10
1	繰り返し使用グリップの取扱い	
2	繰り返し使用グリップの手入れ	
	OWストランドシステム	1 1
1	MAシステムの特長	
2	MCシステムの特長	
_		
3	そ張機器 1	13
1	SM工法用緊張機器	
2	DW工法用緊張機器	

F	PC鋼棒の諸規格	15
1		
2		
3	2 2 2 2	
4	PC鋼棒の特性	
5	プレグラウトPC鋼棒の仕様(土木学会規準 JSCE-E145-2013)	
F	PC鋼棒の取扱いについて	17
1	運搬・保管	
2	配筋前の作業および加工	
3		
F	PC鋼棒用部品	18
1	一般PC鋼棒用部品	
2	ディビダーク鋼棒用部品	
3	ゲビンデスターブ用部品	
34		
j	資料集(PC鋼より線)	19
1	リラクセーションに及ぼす温度の影響	
	リファビーフョンICXは9/m反の記音	
2	温度上昇による機械的性質の変化	
3	温度上昇による機械的性質の変化高温下における強度低下例	
3	温度上昇による機械的性質の変化 高温下における強度低下例 ガス切断による影響範囲	
3 4 5	温度上昇による機械的性質の変化 高温下における強度低下例 ガス切断による影響範囲 曲げ引張りの影響	
3 4 5 6	温度上昇による機械的性質の変化 高温下における強度低下例 ガス切断による影響範囲 曲げ引張りの影響 大気中暴露による性能低下	
3 4 5	温度上昇による機械的性質の変化 高温下における強度低下例 ガス切断による影響範囲 曲げ引張りの影響	
3 4 5 6	温度上昇による機械的性質の変化 高温下における強度低下例 ガス切断による影響範囲 曲げ引張りの影響 大気中暴露による性能低下	
3 4 5 6 7	温度上昇による機械的性質の変化 高温下における強度低下例 ガス切断による影響範囲 曲げ引張りの影響 大気中暴露による性能低下	21
3 4 5 6 7	温度上昇による機械的性質の変化 高温下における強度低下例 ガス切断による影響範囲 曲げ引張りの影響 大気中暴露による性能低下	21
3 4 5 6 7	温度上昇による機械的性質の変化 高温下における強度低下例 ガス切断による影響範囲 曲げ引張りの影響 大気中暴露による性能低下 φ9.4mmPC鋼線:引張応力作用下におけるせん断強さ例	21
3 4 5 6 7	温度上昇による機械的性質の変化 高温下における強度低下例 ガス切断による影響範囲 曲げ引張りの影響 大気中暴露による性能低下 φ9.4mmPC鋼線:引張応力作用下におけるせん断強さ例 資料集 (PC鋼棒) PC鋼棒の応力度ー伸び曲線図 高温における機械的性質の変化	21
3 4 5 6 7	温度上昇による機械的性質の変化 高温下における強度低下例 ガス切断による影響範囲 曲げ引張りの影響 大気中暴露による性能低下	21
3 4 5 6 7 1 2 3	温度上昇による機械的性質の変化 高温下における強度低下例 ガス切断による影響範囲 曲げ引張りの影響 大気中暴露による性能低下 φ9.4mmPC鋼線:引張応力作用下におけるせん断強さ例 (PC鋼棒) PC鋼棒の応力度ー伸び曲線図 高温における機械的性質の変化 ガス切断による影響長さ 塑性曲げ加工の影響	21
3 4 5 6 7 1 2 3 4	温度上昇による機械的性質の変化 高温下における強度低下例 ガス切断による影響範囲 曲げ引張りの影響 大気中暴露による性能低下 φ9.4mmPC鋼線:引張応力作用下におけるせん断強さ例 資料集 (PC鋼棒) PC鋼棒の応力度ー伸び曲線図 高温における機械的性質の変化 ガス切断による影響長さ 塑性曲げ加工の影響 PC鋼棒ねじ部角度定着引張試験結果の一例	21
3 4 5 6 7 1 2 3 4 5	温度上昇による機械的性質の変化 高温下における強度低下例 ガス切断による影響範囲 曲げ引張りの影響 大気中暴露による性能低下 φ9.4mmPC鋼線:引張応力作用下におけるせん断強さ例 資料集 (PC鋼棒) PC鋼棒の応力度ー伸び曲線図 高温における機械的性質の変化 ガス切断による影響長さ 塑性曲げ加工の影響 PC鋼棒ねじ部角度定着引張試験結果の一例	21
3 4 5 6 7 1 2 3 4 5 6 7 8	温度上昇による機械的性質の変化 高温下における強度低下例 ガス切断による影響範囲 曲げ引張りの影響 大気中暴露による性能低下	21
1 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7 2 5 6 7 2 5 6 7 2 5 6 7 2 5 6 7 2 5 6 7 2 6 7	温度上昇による機械的性質の変化 高温下における強度低下例 ガス切断による影響範囲 曲げ引張りの影響 大気中暴露による性能低下	21

21世紀の新しい可能性、 住友電工のPC技術力

プレストレストコンクリート (PC) 技術は、1951年 (昭和26年) に我が国初のPC橋が建設されて以来着実に成長して参りました。この間、PC技術の適用用途はめざましい広がりを見せ、橋梁構造も大きく進化を遂げております。

住友電工は、我が国唯一の総合PC鋼材メーカーとして、半世紀 を越えて高度な技術力と実績を培い、PC技術の向上と普及に 微力ながら努めて参りました。

長年培われたPC鋼材製造の基幹技術をベースとして防食PC 鋼材や各種定着システム、施工機材も取りそろえ、力強い施工 サポート体勢を整えています。

より高度な技術によって更なる高耐久性とコストダウンを求めて、 住友電工のPC技術が未来の新しいPC構造物の可能性を開いて 参ります。

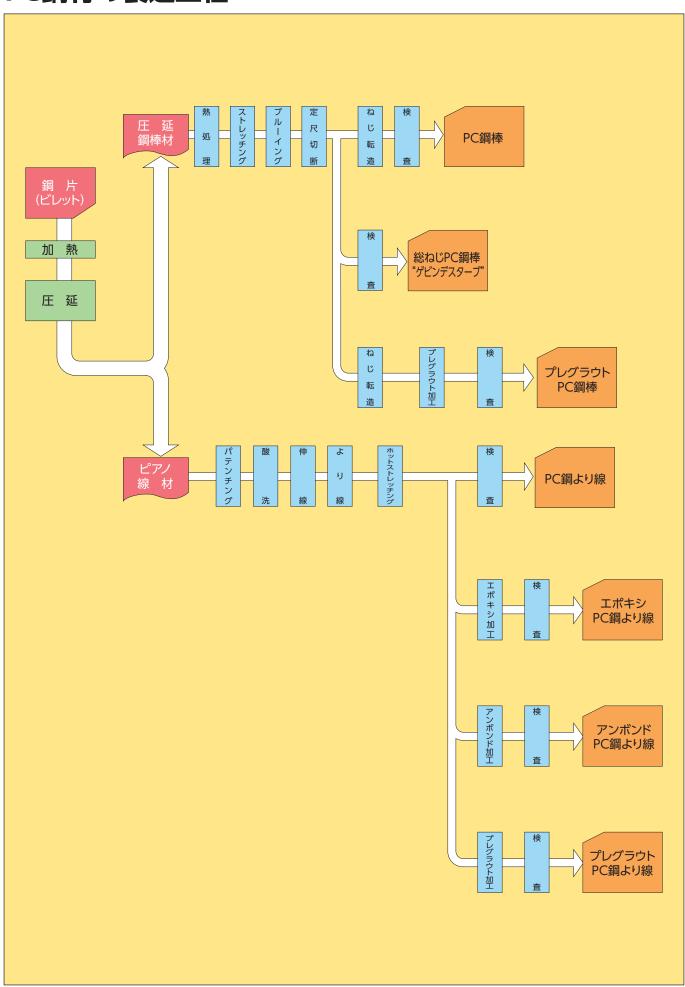
PC鋼材の特性と種類

PC鋼材の特性

●PC鋼より線

- ①弾性限、降伏点強度が高く、大きい引張強さを有すること。
- ②破断時の伸びが大きいこと。
- ③リラクセーションが小さいこと。
- ④品質が均一なこと。
- ⑤伸直性や可とう性が良いこと。
- ⑥コンクリートに対する付着性が良いこと。

●PC鋼棒


- ①弾性限、降伏点強度が高く、大きい引張強さを有すること。
- ②破断時の伸びが大きいこと。
- ③リラクセーションが小さいこと。
- ④品質が均一なこと。
- ⑤ストレッチング方式の為、全数の強度保証が行な われること。
- ⑥ねじ部の耐荷性能が優れていること。

PC鋼材の種類

	種類	サイズ mm	形状
	2本よりPC鋼より線	2.9×2本より	8
	3本よりPC鋼より線	2.9×3本より	
PC鋼より線	7本よりPC鋼より線	9.3~15.2	88
	19本よりPC鋼より線	17.8~21.8	
	19本よりPC鋼より線	28.6	
PC鋼棒	丸 鋼 棒	23.0~40.0	
ト ○ 到明作	総ねじPC鋼棒"ゲビンデスターブ"	23.0~36.0	
プレグラウト PC鋼棒	丸 鋼 棒	32.0	
	7本よりPC鋼より線	12.4~15.2	
アンボンド PC鋼より線	19本よりPC鋼より線	17.8~21.8	
	19本よりPC鋼より線	28.6	
プレグラウト PC鋼より線	19本よりPC鋼より線	17.8~21.8	
PC鋼より線 L	19本よりPC鋼より線	28.6, 29.0	
エポキシPC鋼より線 (ECFストランド)	7本よりPC鋼より線	9.3, 12.7, 15.2, 15.7, 17.8, 21.8	
ポリエチレン被覆 エポキシPC鋼より線 (PE被覆型ECFストランド)	7本よりPC鋼より線	12.7, 15.2, 15.7	

9

PC鋼材の製造工程

PC鋼より線の規格および仕様

日本工業規格 (JIS G 3536-2014)

	種類	記号	nat 2	**	径	許容差	径差		引張試験		リラクセ- % !		公称	単 1型	強度レベル N/mm²
	性 規	高D 与	呼び	7-6	mm	mm	(芯線-側線) mm	0.2% 永久伸び に対する試験力 kN 以上	最大試験力 kN 以上	伸び %以上	N	L	断面積 mm²	質 量 kg/km	以上 (参考)
	2本より線	SWPR2N SWPR2L	(2.9mm)	2本より)	2.90	±0.03	_	22.6	25.5	3.5	8.0	2.5	13.21	104	1,910
	異形3本より線	SWPD3N SWPD3L	2.9mm3	3本より	2.90	_	-	33.8	38.2	3.5	8.0	2.5	19.82	156	1,910
			7本より	9.3mm	9.3	{ +0.4 -0.2	0.05	75.5	88.8	3.5	8.0	2.5	51.61	405	1,720
		SWPR7AN	7本より	10.8mm	10.8	{ +0.4 -0.2	0.07	102	120	3.5	8.0	2.5	69.68	546	1,720
		SWPR7AL	7本より	12.4mm	12.4	{ +0.4 -0.2	0.08	136	160	3.5	8.0	2.5	92.90	729	1,720
Р	7本より線		7本より	15.2mm	15.2	{ +0.4 -0.2	0.08	204	240	3.5	8.0	2.5	138.7	1,101	1,720
C 鋼	7年の7級		7本より	9.5mm	9.5	{ +0.4 -0.2	0.05	86.8	102	3.5	8.0	2.5	54.84	432	1,860
よ		SWPR7BN	7本より	11.1mm	11.1	{ +0.4 -0.2	0.07	118	138	3.5	8.0	2.5	74.19	580	1,860
Ŋ		SWPR7BL	7本より	12.7mm	12.7	{ +0.4 -0.2	0.08	156	183	3.5	8.0	2.5	98.71	774	1,860
線			7本より	15.2mm	15.2	{ +0.4 -0.2	0.08	222	261	3.5	8.0	2.5	138.7	1,101	1,860
			19本より	17.8mm	17.8	{ +0.6 -0.25	_	330	387	3.5	8.0	2.5	208.4	1,652	1,860
			19本より	19.3mm	19.3	{ +0.6 -0.25	_	387	451	3.5	8.0	2.5	243.7	1,931	1,860
	19本より線	SWPR19N SWPR19L	(19本より	20.3mm)	20.3	{ +0.6 -0.25	_	422	495	3.5	8.0	2.5	270.9	2,149	1,810
			19本より	21.8mm	21.8	{ +0.6 -0.25	_	495	573	3.5	8.0	2.5	312.9	2,482	1,810
			19本より	28.6mm	28.6	{ +0.6 -0.25	_	807	949	3.5	8.0	2.5	532.4	4,229	1,780

- 注 ▶7本より線および19本より線の径はより線の外接円の直径とする。
 - ▶ リラクセーションの規格値は1,000時間経過後の値を示す。
 - ▶より線のよりの長さは、2本より線及び異形3本より線では径の24~32倍、7本より線及び19本より線は径の12~18倍。
 - ▶7本より線A種は引張強さ1,720N/mm²級を、B種は1,860N/mm²級を示す。
 - ▶ () のPC鋼より線は、ご検討される場合、事前にお問い合わせをお願いします。

フレシネー工法規格 (HTS-28)

14 WZ		引張試験		ָּע	ラクセーション試	破断後 絞り試験	心線の ねじり試験	
種類	0.2%永久伸び に対する試験力 kN 以上	最大試験力 kN以上	伸び % 以上	10時間値 %以下	120時間値 %以下	1000時間値 %以下	絞り %以上	回転回以上
7本より12.7mm	156	183	3.5	1.5	2.0	2.5	30	3
7本より15.2mm	222	261	3.5	1.5	2.0	2.5	30	3
19本より17.8mm	330	387	3.5	1.5	2.0	2.5	30	3
19本より19.3mm	387	451	3.5	1.5	2.0	2.5	30	3
19本より21.8mm	495	573	3.5	1.5	2.0	2.5	30	3
19本より28.6mm	807	949	3.5	1.5	2.0	2.5	30	3

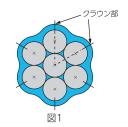
注 ▶他の試験項目については、フレシネー工法規格HTS-28による。

旧国鉄規格

● 2.9mm3本よりPC鋼より線規格

機械的性質

100 100 = 5 1 = 5 0			
直 径 mm	最大試験力 kN以上	0.2%永久伸びに 対する試験力 kN以上	伸 び %以上
2.90±0.03	38.2	33.8	3.5


● インデントの形状

ピッチ	くぼみの深さ	線方向径	伸 び
mm	mm	mm以上	%以上
5.0±1.5	0.13±0.05	1.5	3.5

内部充てん型エポキシ樹脂被覆PC鋼より線(ECFストランド【7本より※1】)の仕様

土木学会規準(案): JSCE-E141適合 NETIS登録番号: TH-120019-VE <mark>活用促進技術</mark> 土木学会技術評価証(第0019号)取得 沿岸技術研究センター評価証(第16006号)取得

種別	呼び径 mm	エポキシ 被覆厚 _{µm}	強度レベル N/mm²	最大試験力	0.2%永久伸び に対する試験力 _{kN}	伸び %	リラクセーション (1,000hr後) %	参考標準単位 質量 ^{*2} kg/km
	9.3 ^{**3, 8}		1,720	≧88.8	≧75.5	≧3.5	≦6.5	435
W0 17 15	12.7		1,860	≧183	≧156	≧3.5	≦2.5 [*] 6	813
JIS規格 強度品							≦6.5	
الماركة الماركة	15.2	15.2 400~1,200 ^{*4} 400~900 ^{*5}	1.060	≧261	>222	≧3.5	≦2.5 ^{*6}	1 1 5 5
			1,860	≦201	≧222	€ 3.3	≦6.5	1,155
	15.7 ^{*7}		2,230	≧335	≥285	≧3.5	≦6.5	1,238
高強度ストランド	17.8 ^{*7,8}		2,040	≧387	≧330	≧3.5	≦6.5	1,571
	21.8* ^{7,8}		2,000	≧573	≧495	≧3.5	≦6.5	2,334

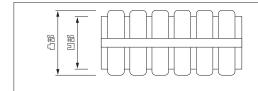
- ※1:土木学会規準(案)JSCE-E141に準拠し、エポキシ樹脂の確実な内部充てんが可能な7本よりとしている。
- ※2:被覆後質量の参考値
- ※3: 9.3mm ECFストランドはプレテンション工法用のみで使用
- ※4:1断面内の各クラウン部(図1)
- ※5:1断面内の全クラウン部(6ケ所)の平均
- ※6:低リラクセーションECFストランドは化学成分がJIS G 3536の規定とは異なるため、ご採用に当たっては予めその点にご注意ください。
- ※7:高強度ECFストランドは化学成分がJIS G 3536の規定とは異なるため、ご採用に当たっては予めその点にご注意ください。
- ※8: 9.3mm、17.8mm、21.8mmは現在、付着型が標準仕様であり、その他の仕様をご希望の場合は事前に弊社までお問い合わせください。

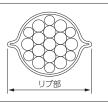
ポリエチレン被覆内部充てん型エポキシ樹脂被覆PC鋼より線(PE被覆型ECFストランド)(土木学会基準 JSCE-E141-2018)

種別	呼び径	基本外径	エポキシ被覆厚 µm	ポリエチレン 標準被覆厚 mm	参考標準 単位質量 kg/km
JIS規格	12.7	16.4		1.25	870
強度品	15.2	18.9	400~1,200*1	1.25	1,230
高強度 ストランド	15.7	21.4	400~900*2	2.25	1,370

※1:1断面内の各クラウン部

※2:1断面内の全クラウン部(6ヶ所)の平均


プレグラウトPC鋼より線の仕様 (土木学会規準 JSCE-E145-2013)


新技術名称:湿気硬化型プレグラウトPC鋼材 NETIS登録番号:QS-110026-VE 活用促進技術

•	形	犬
---	---	---

		シー	ス径		凸部シースの厚さ	参考標準	
呼び名	凸部 mm(標準値)	凹部 mm(標準値)	凹凸の差 mm以上	リブ部 mm 以下	mm 以上	学与保华 単位質量 kg/km	
19本より17.8	25.0±2.0	20.5+2.0-1.5	0.5	31.0	1.0	1,880	
19本より19.3	26.0±2.0	21.5+2.0-1.5	0.5	33.0	1.0	2,180	
19本より21.8	29.0±2.0	24.5 ^{+2.0} -1.5	0.5	36.0	1.0	2,790	
19本より28.6	36.0±2.0	31.5+2.0-1.5	0.5	45.0	1.2	4,520	
19本より 最大試験力 1139kN (タイプ29.0)	37.0±3.0	32.5±3.0	0.5	45.0	1.2	4,584	

※高強度ストランドを使用、土木学会規準JSCE-E145-2013に準拠

●19本より最大試験力1139kN (タイプ29.0) の機械的性質

	_	計の羊	引張試験			11= 0+			344 ANII
呼び名	径 mm	許容差 mm	0.2%永久伸びに対する試験力		伸び	リラクセー ション値 %以下	公称断面積 mm²	単位質量 kg/km	強度レベル N/mm ² 以上 (参考)
			kN以上	kN以上	%以上				
19本より 最大試験力 1139kN (タイプ29.0)	29.0	{ +0.6 -0.25	996	1139	3.5	2.5	547.5	4,293	2080

プレグラウトPC鋼材用湿気硬化型エポキシ樹脂の特性

試験項目	試 料	加温条件	頻度	品質規定
粘 度	湿気硬化型エポキシ樹脂に、重量比で2%の水 を添加し5分間撹拌したもの	90℃ 48時間	樹脂製造ロットごとに1回	150Pa·s以上 600Pa·s以下
デュロメーターD硬さ	定められた期間内に製造されたロットから任意	85℃、95%RH 800時間	定期試験 (1年1回以上)	タイプD 50以上
硬化収縮率	に抽出	85℃、95%RH 800時間	定期試験 (1年1回以上)	1.0%以下

プレグラウトPC鋼材用熱硬化型エポキシ樹脂の特性 ポリエチレンシース用樹脂の特性

試験項目	樹脂タイプ	加温条件	頻度	品質規定	
	常温	80℃、15時間			
ちょう度	暑中	80℃、30時間	樹脂製造ロット	300N F	
	高温	90℃、45時間	ごとに1回	300以上	
	超高温	95℃、45時間			
	常温	80℃、75時間			
デュロメーター	暑中	80℃、150時間	定期試験	タイプD 50以上	
D硬さ	高温	90℃、150時間	(1年1回以上)		
	超高温	95℃、150時間			
硬化収縮率	-	_	定期試験 (1年1回以上)	1.0%以下	

試験項目	品質規定	試験方法	
密度	942kg/m³以上	JIS K7112	
引張破壊強さ	20MPa以上	JIS K6922-2	
引張破壊呼びひずみ	300%以上	JIS K6922-2	
デュロメーターD硬さ	60以上	JIS K7215	
ビガット軟化点	115℃以上	JIS K7206	
耐寒性	-60℃以下	JIS K7216	

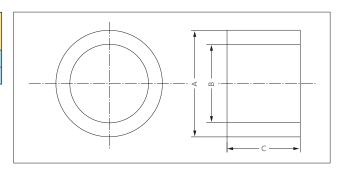
アンボンドPC鋼より線の仕様(住友仕様)

		最大	0.2%		:	アンボント	2	
種類	径 mm	試験力 kN以上	対する試験力 kN以上	基本外径	被覆 標準厚さ mm	参考標準 単位質量 kg/km	グリース 標準質量 kg/km	被覆材 標準質量 kg/km
フォトリ始	12.7	183	156	16.2	1.25	864	35	55
7本より線	15.2	261	222	18.7	1.25	1,219	50	68
	17.8	387	330	21.8	1.50	1,797	60	85
10十上以伯	19.3	451	387	23.3	1.50	2,091	70	90
19本より線	21.8	573	495	25.8	1.50	2,662	80	100
	28.6	949	807	33.3	1.50	4,517	149	139

• ポリエチレンシースの特性

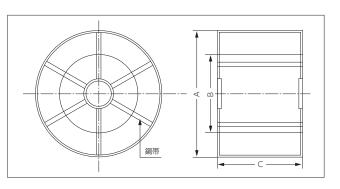
項目	試験方法	特性値例
密 度 (kg/m³)	JIS K7112	944
引張破壊応力 (MPa)	JIS K6922-2	23.7
引張破壊呼びひずみ (%)	JIS K6922-2	620
デュロメーター硬さ (ショアD)	JIS K7215	64
ビカット軟化点 (℃)	JIS K7206	118
耐寒性試験 (℃)	JIS K7216	-70以下

グリースの特性


項目	試験方法	特性値例
ちょう度 (25℃, 60回)	JIS K2220	283
滴 点 (°C)	JIS K2220	203
銅板腐食	JIS K2220	合格

PC鋼より線の荷姿

● 2本より・3本よりPC鋼より線荷姿・・・ あや巻き


径	標準外径 A mm	標準内径 B mm	標準幅 C mm	標準単重 kg
2.9mm2本より	950	735	700	400
2.9mm3本より	1,030	735	730	630

● PC鋼より線(7本より)荷姿・・・センタープル方式(整列巻き)

●PC鉤より線(/本より)何安・・・ ピノダーノル万式(釜列合さ)					
	径	標準外径	標準内径	標準幅	標準単重
	mm	A mm	B mm	C mm	kg
	9.3	1,100	740	750	1,800
2	10.8	1,100	740	750	2,000
t	12.4	1,100	740	750	2,000
の	12.7	1,100	740	750	2,000
	15.2	1,250	960	750	2,000
2	9.5	1,250	740	750	2,900
3 t	11.1	1,250	740	750	2,900
もの	12.7	1,250	740	750	3,000
	15.2	1,400	960	750	3,000

• 注意事項

開梱する前に必ず引き出し方向のマークを確認してください。 逆方向からの引き出しは、引き出し不良の原因となります。

PC鋼より線の取り扱いについて

- 特にご注意願いたいこと
 - ①適切な定着装置をご使用ください。
 - ②緊張力の管理を十分に行なってください。
 - ③PC鋼より線に溶接すること、およびアークを飛ばすことは絶対に避けてください。

運搬・保管

- 運搬荷役に際しては投げおろしたり、引きずったりしないようご注意願います。
- 保管に際しては損傷防止および防食・防錆のため地面に直接置かず必ず枕木などの上に置き、 さらに雨露にさらされないようご配慮ください。

配筋前の作業および加工

- 緊張後の余長を切断する場合はグラインダー、カッターをご使用ください。 やむなくガス切断される時は定着具より鋼材径の1.5倍以上離れた箇所で 切断してください。
- 溶接、加熱、局部的な折り曲げは絶対に行なわないでください。

配筋ならびに応力導入

- PC鋼より線の種類にあった定着具・機器を使用し、正しくセットしてください。
- 緊張中は、危険ですのでジャッキの後に立たないようにご注意ください。

PC鋼より線用部品

繰り返し使用グリップ(プレテン用)

	メス	コーン	オスコ	コーン	質 量
呼び名	Α	В	а	b	kg/個
	mm	mm	mm	mm	(参考)
2.9mm 3本より	38	28	40	18	0.17
9.3mm, 9.5mm	37	35	39	23	0.23
10.8mm, 11.1mm	44	40	45	27	0.36
12.4mm, 12.7mm	52	45	53	31	0.60
15.2 _{mm} (A) (B)	60	55	62	38	1.00

※2本より、3本よりのオスコーンは2枚刃となりますのでご注意願います。

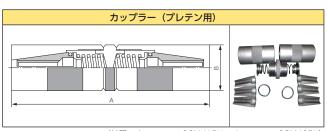
繰り返し用(プレテン用)

(材質:オスコーン: SCM415H、メスコーン: SCM435H)

繰り返し使用フタ付グリップ(プレテン用)

呼び名	A mm	B mm	質 量 kg/個 (参考)
2.9mm 3本より	63	28	0.25
9.3mm, 9.5mm	78	35	0.42
10.8mm, 11.1mm	86	40	0.61
12.4mm, 12.7mm	98	45	0.90
15.2mm (A) (B)	110	55	1.50

^{※2}本より、3本よりのオスコーンは3枚刃となり、プレテングリップ用のオスコーンとは 異なりますのでご注意願います。


フタ付グリップ(プレテン用)

(材質:オスコーン: SCM415H、メスコーン: SCM435H)

繰り返し使用カップラー(プレテン用)

一杯ノたしたババンファン	(113)		
呼び名	A mm	B mm	質 量 kg/個 (参考)
2.9mm 3本より	133	28	0.52
9.3mm, 9.5mm	150	35	0.88
10.8mm, 11.1mm	168	40	1.31
12.4mm, 12.7mm	190	45	1.90
15.2 _{mm} (A) (B)	210	55	3.07

※2本より、3本よりのオスコーンは3枚刃となり、プレテングリップ用のオスコーンとは 異なりますのでご注意願います。

(材質:オスコーン: SCM415H、メスコーン: SCM435H)

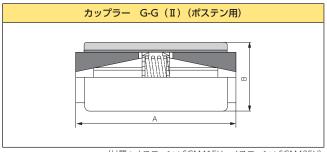
埋込用グリップ(ポステン用)

	メスコ	コーン	オスコ	コーン	質量
呼び名	Α	В	а	b	kg/個 (参考)
	mm	mm	mm	mm	
12.4mm、12.7mm	43	40	40	26.2	0.37
15.2 _{mm} (A) (B)	48	45	45	31	0.53
17.8mm	60	50	58	36	0.79
19.3mm	65	55	65	39.5	1.05
21.8mm	75	65	75	44.5	1.72
28.6mm	90	80	90	55	3.12
29.0mm	97	90	101	60	5.80

(材質:オスコーン:SCM415H、メスコーン:SCM435H)

● ナット式グリップ (ポステン用)

呼び名	A mm	B mm	質 量 kg/個 (参考)
12.4mm、12.7mm	55	53	0.90
15.2 _{mm} (A) (B)	60	58	1.10
17.8mm	70	68	1.40
19.3mm	75	70	1.70
21.8mm	85	85	2.90
28.6mm	110	110	5.60



ナット式グリップ (ポステン用) メスコーン 押さえキャップ

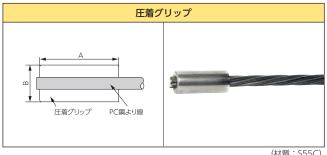
(材質:オスコーン:SCM415H、メスコーン:SCM435H)

● カップラーG-G(Ⅱ)(ポステン用)

呼び名	A mm	B mm	質 量 kg/個 (参考)
12.4mm、12.7mm	130	55	1.90
15.2 _{mm} (A) (B)	140	60	2.60
17.8 _{mm}	170	70	3.80
19.3 _{mm}	180	75	4.60
21.8mm	200	85	6.80
28.6mm	260	97	9.60

(材質:オスコーン: SCM415H、メスコーン: SCM435H)

●カップラーG-G(Ⅲ)(プレグラウトPC鋼より線用)

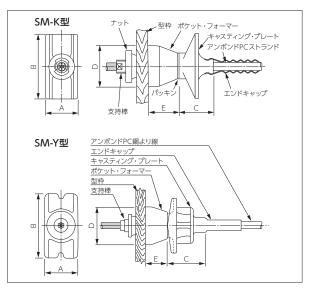

呼び名	A mm	B mm	質 量 kg/個 (参考)	
12.4mm、12.7mm	-	-	-	
15.2mm (A) (B)	_	-	-	
17.8mm	_	-	-	
19.3mm	210 75		7.00	
21.8mm	235	85	10.30	
28.6mm	260	97	15.40	
29.0mm	282	110	13.30	

** G-G (II)、(II) 型以外のカップラーもございますので用途をご検討のうえ、ご相談願います。

カップラー G-G(Ⅲ)(プレグラウトPC鋼より線用) ゴムスペーサー兼押さえ板 オスコーン 1次施工側メスコーン 2次施工側メスコーン (材質:スリーブ:SCM435H)

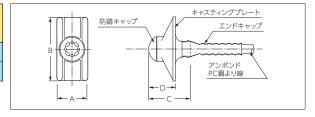
●圧着グリップ

呼び名	A mm	B mm	質 量 kg/個 (参考)						
12.4mm、12.7mm	55.0	25.5	0.17						
15.2 _{mm} (A) (B)	70.0	30.0	0.28						
17.8mm	100.0	35.0	0.56						
19.3 _{mm}	115.0	38.0	0.76						
21.8mm	135.0	44.5	1.28						
28.6mm	163.0	57.0	2.40						

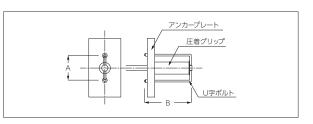


(材質:S55C)

●SM工法用キャスティングプレート


PC鋼より線 mm		呼び名	A mm	B mm	C mm	D mm	E mm	質量 kg/個
7本より線	φ12.4 φ12.7	SM · Y-13	60	120	80	83	62	1.19
線	φ15.2 (A) (B)	SM • K-15	70	144	77	92	65.5	1.40
19	φ17.8	SM • K-18	86.5	175	96	112	77	2.20
19本より線	φ19.3	SM • Y-19	91	190	120	125	80	4.65
線	φ21.8	SM • K-22	95	230	125	125	80	5.50

(注) 掲載サイズA、B、C、D、Eは各部品装着時の寸法とする。 その他の仕様については弊社にお問い合わせください。


● SM工法用固定端キャスティングプレート

	PC鋼より線 mm		A mm	B mm	C mm	D mm	質量 kg/個
7本より	φ15.2	SM · KF-15	70	144	93	58	1.40
19本より	φ17.8	SM/KF-18	86.5	175	110	71	2.20


● SM工法用固定端定着具(組立後)

	より線 _{nm}	呼び名	A mm	B mm	Ф mm
71	φ12.7	SM • F-13	70	96	M6
7本より	(φ15.2)	(SM • F-15)	(80)	(110)	(M6)
	(φ17.8)	(SM • F-18)	(80)	(148)	(M8)
10 + EU	φ19.3	SM·F-19	80	165	M8
19本より	φ21.8	SM • F-22	100	195	M8
	φ28.6	SM • F-29	110	225	M8

SM工法用リングアンカー

- SIVILIZ/[] > > > > 5									
	PC鋼より線 mm		呼び名	h mm	L mm	d mm	質量 kg/個		
	7本より	φ15.2	SM · G-G (R)	100	200	55	2.10		
	19本より	φ17.8	3/VI * G-G (K)	100	185	60	4.90		

弊社のPC鋼より線のより方向はすべてSよりです。

ZよりのPC鋼より線と接続して使用すると、互いのよりが戻って適切なプレストレスの導入ができなくなりますので 絶対にその組合せで使用しないでください。

尚、弊社のPC鋼より線を他社製の定着具や接続具、緊張機器との組合せでご使用になる場合は、予め弊社にご相談ください。場合によっては適合性の検証が必要となります。

繰り返し使用グリップの取扱いについて

繰り返し使用グリップの取扱い

- ①使用前に鋼材の寸法に適したグリップかどうかサイズ を確認してください。
- ②メスコーン内面及びオスコーン外面(テーパー面)に モリコート(二硫化モリブデン)が塗布されているか どうか確認してください。塗布されていませんとオス コーン片がずれて定着され、緊張中に鋼材が破断する 恐れやメスコーンからオスコーンが取り外せなくなる 恐れがあります。

モリコート以外の物は使用しないでください。

- ③各オスコーン片がずれないように正確に合わせてください。
- ④PC鋼材を切断する時は、グラインダーカッターを用い オスコーン端部からの余長を20mm以上としてくだ さい。
- ⑤緊張作業中および、緊張後にグリップや鋼材をハンマー などで、叩いて衝撃を与えないよう注意してください。
- ⑥緊張時には緊張方向の延長線上に立たないようにし、 グリップ後部に適当な遮蔽板を立てて作業してくだ さい。

正常な装着状況 (オスコーンのずれ無)

不具合のある装着状況 (オスコーン軸方向のずれ有)

正常な装着状況 (オスコーンのずれ無)

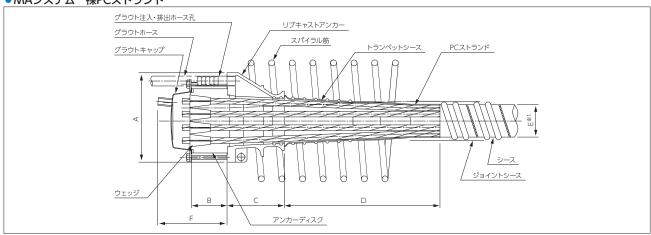
不具合のある装着状況 (オスコーン円周方向のずれ有)

繰り返し使用グリップの手入れ

- ①使用するたびに、メスコーン、オスコーンともに付着 している錆、塵埃などを取除いてください。特にオス コーンのねじ山部はPC鋼材を把握する重要部分なの で、ワイヤーブラシなどできれいに掃除してください。
- ②オスコーンの変形状況、オスコーンのねじ山部の摩耗、 損傷程度を調べて継続して使用できるものを選別して ください。継続して使用不可能と判断した場合は無理 に使用せず廃棄してください。

廃棄品と良品とが混同しないように注意してください。

- ③掃除後、メスコーン内面及びオスコーンの外面(テーパー面)にモリコートを塗付してください。
- ④保管に当たっては塵埃および、水滴などが付着しないように専用の保管箱などに入れてください。
- ⑤良好な保管および使用状態のもので、社内試験により 100回の繰り返し使用を確認しておりますが、現場での使用状態を勘案し50回を限度としてください。使用 に際してはストランド、グリップおよびカップラーの 繰り返し使用回数を必ず確認し、50回繰り返し後に廃棄してください。また使用状態、使用環境および使用 期間等によっては損傷が著しい場合があります。50回の繰り返し以前であっても損傷が生じた部品についてはすみやかに廃棄し、Oリングやオスコーンだけでなく、メスコーンやカップラー等も同様に新品と交換してください。


オスコーンの清掃状況

DWストランドシステム

MAシステムの特長

- ① 定着体がコンパクトで配置が容易。
- ② 定着体の組立が簡単・確実。
- ③ 信頼性の高いストランド1本ずつのくさび定着。
- ④ ジャッキの押込装置により、バラツキの無い安定した定着が可能。
- ⑤マルチジャッキを用いた一括緊張が可能。
- ⑥ ジャッキのウェッジ自動脱着装置により緊張施工が容易(裸線)。
- ⑦エポキシ鋼材などの防食鋼材の適用が可能。
- ※詳細につきましては、「ディビダーク工法設計・施工マニュアル」をご参照ください。

●MAシステム 裸PCストランド

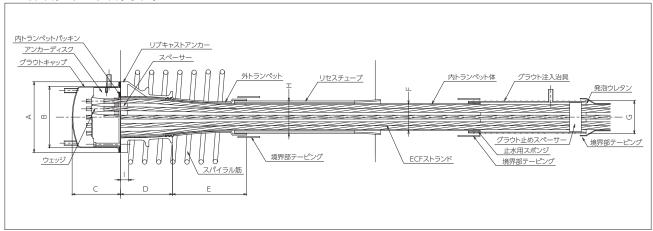
●MAタイプ定着具の寸法(裸PCストランド)

		7 AL/1075	O JULY	水・ 〇ァ ・ ・										
<u></u>	システム t法	12S12.4 12S12.7	3S15.2	4S15.2	5S15.2	7\$15.2	9S15.2	12S15.2	15S15.2	19S15.2	27515.2	37\$15.2	48S15.2	61515.2
	Α	φ180	φ120	φ150	φ150	φ180	φ180	φ222	φ250	φ280	φ315	□395	□450	□495
	В	59	49	49	49	48	59	74	84	94	120	150	170	180
	С	125	80	90	90	125	125	180	200	220	240	350	380	405
	D	340	180	225	225	340	340	470	515	580	700	700	800	850
	E*1	φ70	φ45	φ55	φ55	φ65	φ75	φ80	φ90	φ95	φ105	φ130	φ150	φ175
	F	159	126	126	126	148	160	163	166	171	209	218	(270)*2	(290)*2

※ 1:E はシース内径を表す。 ※ 2:() 寸法は参考 単位:mm

• 構成部品(裸PCストランド)

構成部品名	材	質	数量	備考
ウェッジ	SCM415Hまたは 相当品(C15Pb)	JIS G 4052 DIN EN 10277	-	ストランド本数分
リブキャストアンカー	FCD450-10	JIS G 5502	1	_
アンカーディスク	S45C	JIS G 4051	1	-
トランペットシース	HDPE (SPCC)	JIS K 6922	1	27S15.2のみSPCC
グラウトキャップ	SPCC等*	JIS G 3141等	1	1
グラウト単管	SGP	JIS G 3452	1	1
スパイラル筋	SD295A以上	JIS G 3112	1	現場準備品
グラウトホース	_	_	_	現場準備品
シース	_	_	_	現場準備品
シースジョイント	_	_	_	現場準備品


[・]構成部品は全サイズ共通

※グラウトキャップはサイズにより SPCE、STK400、STKM13A または SS400 を使用することがある。

MCシステムの特長

- ① 2重構造のためケーブル切断によりケーブルと主要定着部品の交換が可能
- ② ケーブルの一括引き込みによる工期短縮が可能
- ③ エポキシ鋼材の使用により、
 - 自由長部のPE保護管の融着・組立・設置作業の省略が可能
 - 自由長部のグラウト作業を不要とし、且つ信頼性の高い防食性能を確保

• MCシステム ECFストランド

● MCタイプ定着具の寸法(ECFストランド)

(mm)

ケーブルサイズ	А	В	С	D	E	F	G	Н	I	グラウト ホース内径
MC12S15.2EP	φ250	φ216.3	200	200	310	φ89	φ114	φ114.3	45	φ19
MC19S15.2EP	φ300	φ260.4	200	220	320	φ114	φ140	φ139.8	45	φ19
MC27S15.2EP	φ395	φ339.7	250	350	374	φ140	φ165	φ165.2	45	φ19

● 構成部品(ECFストランド)

構成部品名	材	質	数量	備考
ウェッジ	SCM415Hまたは 相当品 (C15Pb)	JIS G 4052 DIN EN 10277	_	ストランド本数分
リブキャストアンカー	FCD450-10	JIS G 5502	1	_
アンカーディスク	S45C	JIS G 4051	1	-
外トランペット	HDPEまたは FCD450-10	JIS K 6922 JIS G 5502	1	
内トランペット体	HDPE	JIS K 6922	1	_
グラウトキャップ	SPCC等*	JIS G 3141等	1	_
スペーサー	HDPE	JIS K 6922	1	_
内トランペットパッキン	CR	-	1	_
グラウト注入治具	HDPEまたは 一般ポリエチレン管2種管 他	JIS K 6922 JIS K 6761他	1	_
グラウト止めスペーサー	HDPE	JIS K 6922	1	-
スパイラル筋	SD295A以上	JIS G 3112	1	現場準備品
リセスチューブ	_		1	現場準備品

[・]構成部品は全サイズ共通

[※]グラウトキャップはサイズによりSPCE、STK400、STKM13AまたはSS400を使用することがある。

緊張機器

SM工法用緊張機器

SM工法は、当社が開発したポストテンション工法のひとつで、昭和48年以来、橋梁の横締め用・PCタンク・PC舗 装・PC建築にとその応用分野を広げています。

 ϕ 12.4 \sim ϕ 15.2の7本より、 ϕ 17.8 \sim ϕ 29.0の19本よりのPC鋼より線を、SM工法用ジャッキを用いて1本ずつ緊張、 定着する工法です。

この工法では、下表及び写真に示すジャッキ及びポンプを緊張機器として、使用しています。

・ジャッキ

機 種	J-22	J-30	J-50	J-75	J-75L	U-50	U-95
適用サイズ	12.4 12.7 15.2 12.7ECF	15.2ECF 15.7ECF 17.8	17.8 19.3 21.8	28.6	28.6	17.8ECF 21.8ECF	29.0
最大出力 (kN)	215	294	490	735	735	490	950
最大ストローク (mm)	200	200	180	180	300	180	250
緊張受圧面積 (cm²)	35.34	44.77	75.40	114.47	114.47	75.40	145.49
最高使用圧力 (MPa)	60.8	65.7	65.1	64.3	64.3	65.1	65.3
閉じたジャッキの長さ (mm)	506	542	560	490	610	620	788
開いたジャッキの長さ (mm)	625	650	640	670	910	790	1038
先端径 (mm)	65	65	85	99	99	85	140
最小つかみ長さ (mm)	305	315	330	335	335	675	775
最大直径 (mm)	114	141	172	190	190	172	235
質量 (kg)	19.5	28	58	69	88	60	120
ジャッキ内部摩擦ロス (%)	2	2	2	2	2	2	2

- ▶上記以外の機種もございますのでお問い合わせください。
- ▶ ジャッキ使用前には、ジャッキ本体記載の数値をご確認ください。

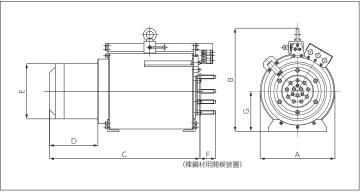
SMJ型ジャッキ

・ポンプ

ポンプ型番	SMP-MINI-N	SMP-SEMI
最大圧力 (MPa)	70.6	70.6
電動機	0.4kW×100V×3P	2.2kW×220V×4P
吐出量(ℓ/min)	0.35	2.0
外形寸法 (mm)	縦340×横410×高さ500	縦800×横630×高さ1000
総質量 (kg)	57	150

▶標準ホース長は6mとなります。

SMP-MINI-N


SMP-SEMI

DW工法用緊張機器

●ジャッキ

DWJ-300

マルチストランド用ジャッキの形状

		DWJ-110	DWJ-180	DWJ-300	DWJ-500A	DWJ-500B*1	DWJ-680	DWJ-860	DWJ-1300
適用ポンプ	,	SMP-SEMI DWP-3.7	DWP-3.7	DWP-3.7 DWP-7.5A	DWF DW	P-7.5B P-11	DWP-11	DWP-11	DWP-22
最大出力	kN (tf)	1079 (110)	1765 (180)	2942 (300)	4217 (430)	4903 (500)	6669 (680)	8434 (860)	12749 (1300)
質 量	kg	118	210	329	730	625	1200	2475	3200
緊張ラム 受圧面積	cm ²	185	407.42	549.78	894.76	861.78	1237	1417.65	2710.4
ストローク	mm	250	250	250	250	250	300	300	250
А	mm	254	340	490	520	485	592	740	890
В	mm	343	445	530	707	600	820	1085	1235
С	mm	574	635	670	806	834	1050	1205	1150
D	mm	162	190	205	290	294	362	405	420
Е	mm	180	225	270	320	320	360	450	640
F	mm	100	100	100	100	100	100	100	100
G	mm	135	160	195	280	280	320	400	500
内部摩擦	%		2						4
適用ケーブル	V	3S15.2 4S15.2 5S15.2	12S12.4 12S12.7 7S15.2 9S15.2 12S15.7 12S15.2 19S15.2 19S15.2 19S15.7		22S15.2 27S15.2 37S15.2	37S15.2 48S15.2	48S15.2 61S15.2		

^{※1} DWJ-500Bは、緊張力を問わず27S15.2の緊張には適用できない。

●ポンプ

機種	SEMIP-2.2	DWP-3.7	DWP-7.5A	DWP7.5B	DWP-11B	DWP-22
最大圧力 (MPa)	70.6	49	59	65	64	47
電動機	2.2KW	3.7KW	7.5KW	7.5KW	11KW	22KW
吐出量 (L/min)	2	3.8	7	4.8	9.6	22.5
外形寸法 (mm) (縦・横・高さ)	800 × 630 × 1000	735 × 580 × 865	783 × 580 × 956	750 × 750 × 1075	875 × 1150 × 1275	1040 × 1850 × 1321
質量 (kg)	150	150	280	285	560	720

DWP-3.7KWポンプ

PC鋼棒の諸規格

一般PC鋼棒(丸鋼棒)JIS規格 (JIS G 3109-2020)

• 鋼棒の種類、記号および機械的性質

種類		記号		耐力 N/mm²以上	引張強さ N/mm ² 以上	伸 び %以上	リラクセー ション値 % 以下
A 種	2号	SBPR	785/1030	785	1,030	5.0	4.0
B 種	1号	SBPR	930/1080	930	1,080	5.0	4.0
B 種	2号	SBPR	930/1180	930	1,180	5.0	4.0
C 種	1号	SBPR	1080/1230	1,080	1,230	5.0	4.0

注)耐力とは0.2% 永久伸びに対する応力をいう。

• 鋼棒の寸法およびねじ形状

	呼び名		平行	部		ねじ部					
種類		径 mm	径の許容差 mm	公 称 断面積 mm	単位質量 (参考) kg/m	ねじの 呼 び	外 径 mm	有効径 mm	谷 径 mm	ピッチ mm	
	23mm	23.0		415.5	3.26	M24×2.0	24.000	22.701	21.835	2.0	
	26mm	26.0	-0.6	530.9	4.17	M27×2.0	27.000	25.701	24.835	2.0	
丸棒	32mm	32.0	プラス側は	804.2	6.31	M33×2.0	33.000	31.701	30.835	2.0	
	36mm	36.0	規定しない	1,018.0	7.99	M38×3.0	38.000	36.051	34.752	3.0	
	40mm	40.0		1,257.0	9.87	M42×3.0	42.000	40.051	38.752	3.0	

- 注 1) 鋼棒長さはユーザーの指定によるものとし、その寸法公差は-0、+10mmとする。
 - 2) ねじ部長さはユーザーの指定によるものとし、その寸法差は-0、+10mmとする。
 - 3) 長さ以外のねじ部寸法許容差はJIS B 0209 3級以上とする。
 - 4) 呼び名36mm、40mmの鋼棒は事前にお問い合わせください。

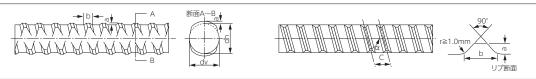
●化学成分(%)

P	S	Cu
0.030以下	0.035以下	0.30以下

注)表記不純物の値は、とりべ分析の値とする。

ディビダーク工法用PC鋼棒規格

• 呼び名および機械的性質


呼び名	公称断面積	種 類	記号	引張荷重	降伏点荷重	伸び		ねじ部	
呼び名	mm ²	種類	10 元 元	kN 以上	kN 以上	% 以上	種 類	ピッチ mm	有効径 mm
26mm	530.9	A種2号 B種2号	SBPR 785/1030 SBPR 930/1180	547 626	417 494	7.0 6.0	非対称 非対称	3.0 3.0	25.701 25.701
32mm	804.2	A種2号 B種2号	SBPR 785/1030 SBPR 930/1180	828 949	631 748	7.0 6.0	非対称 非対称	3.0 3.0	31.701 31.701
40mm	1,257	A種2号 B種2号	SBPR 785/1030 SBPR 930/1180	1,294 1,483	986 1,169	7.0 6.0	非対称 非対称	4.0 4.0	40.026 40.026

- 注 1) 鋼棒長さはユーザーの指定によるものとし、その寸法公差は-7.5、+0mmとする。
 - 2) ねじ部長さはユーザーの指定によるものとし、その寸法差は-0、+10mmとする。
 - 3) 長さ以外のねじ部寸法許容差はJIS B 0209 3級以上とする。

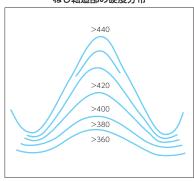
総ねじPC鋼棒(ゲビンデスターブ)規格

• 呼び名および機械的性質

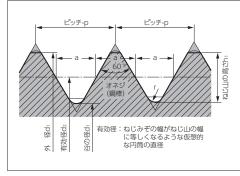
		母材部			引張試験			リラクセーション試験
呼び名	公称径 mm	断面積 mm²	耐力 N/mm²以上	降伏点荷重 kN以上	引張強さ N/mm²以上	引張荷重 kN以上	伸 び %以上	リラクセーション値 % 以下
23mm	23.0	415.5	930	386	1,080	449	6.0	4.0
26 _{mm}	26.0	530.9	930	494	1,080	573	6.0	4.0
32mm	32.0	804.2	930	748	1,080	869	6.0	4.0
36mm	36.0	1,018	930	947	1,080	1,099	6.0	4.0

	参考標準単位質量	母材部	基本径		ねじ状	節寸法	
呼び名	G kg∕m	dh mm	dv mm	高さ a mm	幅 b mm	ピッチ C mm	リード角 α 度
23 _{mm}	3.42	23.0	23.0	1.40	5.5	12.0	81
26mm	4.38	26.0	26.0	1.70	6.5	12.7	81
32mm	6.63	32.0	32.0	2.00	7.0	17.0	81
36mm	8.27	36.0	36.0	2.18	8.6	18.0	81

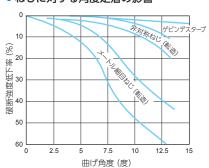
 P
 S
 Cu


 0.030以下
 0.035以下
 0.30以下

PC鋼棒の特性


メートルねじ(転造ねじ)

一般PC鋼棒およびディビダーク工法用PC鋼棒 (ゲビンデは含まない) のねじは転造方式によって作られます。 ねじ転造によって谷部は窪み、山部が盛り上り下図のような硬度分布になっています。組織が切断されることなく、谷底まで加工硬化されることによりねじ部の強度が向上しています。


ねじ転造部の硬度分布

ねじ部有効径のとり方

• ねじに対する角度定着の影響

プレグラウトPC鋼棒の仕様 (土木学会規準 JSCE-E 145-2013)

呼び名	凸部 mm(標準値)	凹部 mm(標準値)	リブ部 mm 以下	西部シース厚さ mm以上
φ32mm	39.0±2	ე-ш≧0.5	50.0	1.2

新技術名称:湿気硬化型プレグラウトPC鋼材 NETIS登録番号:QS-110026-VE <mark>活用促進技術</mark>

注) dh=ねじ状節に対し垂直方向の直径 dv=ねじ状節に対し直角方向の直径

PC鋼棒の取扱いについて

- 特にご注意願いたいこと
 - ①アンカープレートは鋼棒に対し正しく直角になるように配置してください。
 - ②ナットやカップラー類は所定の長さに確実にねじ込んでください。
 - ③鋼棒にアークを絶対に飛ばさないでください。

運搬・保管

- ねじ部は傷をつけたり、錆びさせないよう特に注意願います。またねじ部の保護キャップは緊張時まではずさないことが望まれます。
- 防錆・防食のためPC鋼棒は地面に直接置かず、枕木などの上に置き、さらに雨露にさらされないようご配慮ください。
- スパークを飛ばしたり、局部的な高熱を受けたりする と、材質が変化し事故の原因となりますので、電気溶 接や通電中の電線などからは離して保管してください。
- 長尺の鋼棒を運搬される場合は2箇所以上で吊り上げるようにしてください。

配筋前の作業および加工

- 事前に塑性曲げ加工する場合は適当なBar-Benderを使用し、均一な曲率が得られるようにしてください。
- 転造ねじ長さを変更することはできませんので充分検 討のうえご発注願います。
- ねじ山が損傷した場合、現場で手直しすることは非常に危険ですから行なわないようにしてください。
- 鋼棒を接続する場合は必ず専用のカップラーをご使用 ください。また中央のピンにあたるまで完全にねじ込 んでください。
- 緊張後の余尺長を切断する場合はグラインダーカッターにより冷間切断してください。

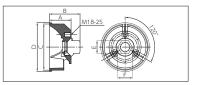
配筋ならびに応力導入

- 弾性曲げ配置は曲げ半径を棒径の700倍以上とり、局部的に曲がらぬように適当な指示方法をとってください。
- アンカープレートは鋼棒に対し正しく直角になるよう に配置してください。
- ナットはナット端面より鋼棒が突出するまで完全にねじ込んでください。
- プルロッドまたはジャッキ用カップラーを鋼棒に取り付けるときは、棒径の1.5倍以上完全にねじ込むようにしてください。

PC鋼棒用部品

一般PC鋼棒用部品 繰返し使用には熱処理ナット、熱処理カップラーをご使用ください。

			ナッ	ット		カップラー					ワッシャー				
鋼棒径 mm	ネジの 呼び	B mm	C mm	H mm	質 量 kg/個 (参考)	D mm	L mm	F mm	E mm	G mm	質 量 kg/個 (参考)	D mm	d1 mm	t mm	質 量 kg/個 (参考)
23	M24×2.0	46	53.1	36	0.400	46	80	18	39	5.5	0.720	58	25.5	4.0	0.067
26	M27×2.0	50	57.7	40	0.515	50	90	20	42	6.0	0.920	62	28.5	4.0	0.073
32	M33×2.0	58	67.0	49	0.815	60	110	25	52	6.0	1.610	72	34.5	4.5	0.111
36	M38×3.0	65	75.0	60	1.200	67	120	25	53	6.0	2.200	78	39.5	5.0	0.140
40	M42×3.0	75	86.5	66	1.800	75	130	25	60	6.0	3.100	90	43.5	8.0	0.310
図面				- Q w -			F •		d ₁ D						

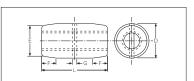

(材質:ナット:S45C、カップラー:S45C、ワッシャー:SS400)

ディビダーク鋼棒用部品

• 定着具の形状と寸法

φ32用 アンカーグロッケ (フェールセーフ機構付)

種類	A (mm)	B (mm)	C (mm)	D (mm)	E (mm)	F (mm)	質 量 (kg/個) (参考)	
RS型(緊張側)	84	118	180	190	50	57	5.200	
RF型(固定側)	84	118	180	190	50	57	5.100	



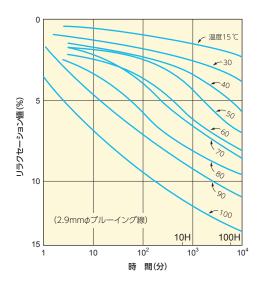
(材質:アンカーグロッケ:FCD450、テーパーナット:S45C)

カップラー

呼び名		ネジ部		ピン径	外 径	質 量 (kg/個) (参考)	
17U-43	L (mm)	E (mm)	F (mm)	G (mm)	D (mm)		
26 _{mm}	90	42	20	6.0	50	0.920	
32 _{mm}	110	52	25	6.0	60	1.610	

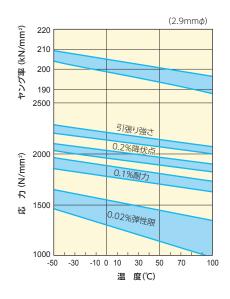
(材質:S45C)

ゲビンデスターブ用部品 繰返し使用には熱処理ナット、熱処理カップラーをご使用ください。


鋼棒径	ナット			カップラー				溝付ナット				満付ナット用アンカープレート							
州中1土 mm	B mm	C mm	H mm	質 量 (kg/個) (参考)	φ mm	L mm	E mm	F mm	質 量 (kg/個) (参考)	B mm	C mm	H mm	φ mm	質 量 (kg/個) (参考)	S mm	t mm	φ mm	φ' mm	質 量 (kg/個) (参考)
23	46	53.1	55	0.60	46	120	40	40	1.00	46	53.1	55	32	0.50	120	25	32	55	2.60
26	50	57.7	60	0.70	50	140	42	50	1.10	50	57.7	60	35	0.60	135	28	35	61	3.70
32	58	67.0	70	1.10	60	170	46	62.5	1.90	58	67.0	70	42	1.00	165	32	42	74	6.40
36	65	75.0	95	1.90	67	220	55	70	2.60	65	75.0	95	47	1.80	185	38	46	84	9.50
図面		B		H			↓			0	Н		B	U	4	Ø t	- S		

(材質:ナット:S45C、カップラー:S45C、満付ナット:S45C、満付ナット用アンカープレート:SS400)

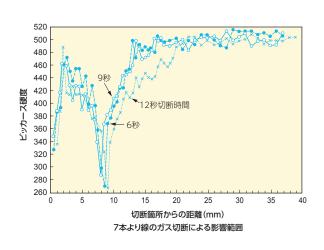
資料集(PC鋼より線)


リラクセーションに及ぼす温度の影響

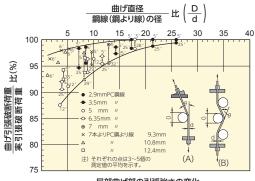
温度が高くなるとリラクセーションは促進されます。 火災などに遭遇した場合にはリラクセーションが大幅 に進行することが予想されます。また夏期に露天のプ レテンション・ベッドに鋼線を張り渡したまま直射日 光にさらす場合も、鋼線の温度はかなり上昇し、した がってリラクセーションも増加することになります。

温度上昇による機械的性質の変化

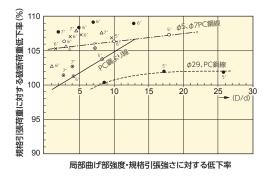
PC構造物の施工時の温度変化によって、PC鋼より線の機械的性質が著しく変化するのは好ましくありません。図にみられるように、施工時の温度変化あるいは構造物が受ける温度変化の範囲内では、作業の障害や構造物の機能を損なうようなことは、まずないことがわかります。


高温下における強度低下例

図は火災などの高温を受けた場合の強度低下を調べた ものです。200℃~300℃以上の高温を受けると強度 は急激に低下します。

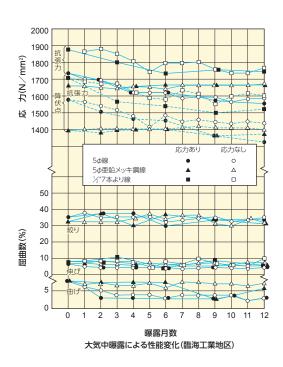

ガス切断による影響範囲

緊張後の鋼線の端末をガス切断する場合の影響を調べたものです。切断面より15mm~20mm位の範囲内は熱影響を受けて強度低下をきたしますので、プレテンション方式の場合はともかくポストテンション方式の場合は、鋼材径の1.5倍以上離れた箇所で切断することが肝要です。

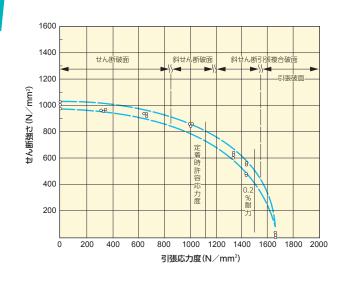


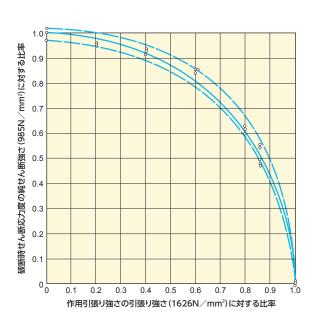
曲げ引張りの影響

PC鋼線および鋼より線を局部曲げの状態で緊張する 場合の強度低下の程度を調べたものです。 ϕ 5mm、 ϕ 7mmPC鋼線やPC鋼より線では $\frac{1}{d}$ が 5以上であればほとんど規格値を満足するのが実体の ようです。



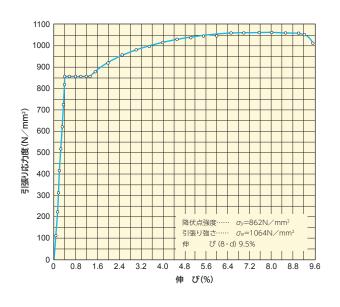
局部曲げ部の引張強さの変化

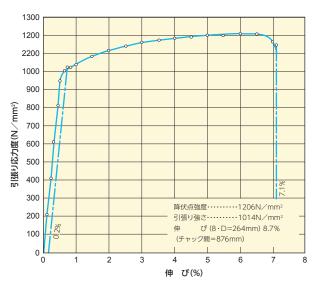



大気中曝露による性能低下

PC鋼線およびPC鋼より線を長期にわたって屋外放 置した場合、腐食によってどの程度性能劣化をきたす かを調査した結果です。腐食雰囲気の著しい臨海工業 地帯などにおいては1ヵ月以上放置することは好まし くありません。

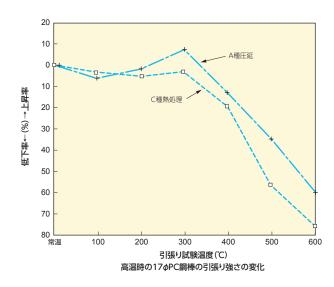
φ9.4mmPC鋼線:引張応力作用下におけるせん断強さ例





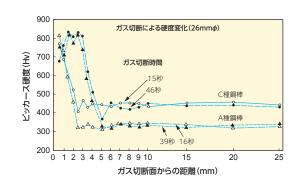
資料集(PC鋼棒)

PC鋼棒の応力度-伸び曲線図

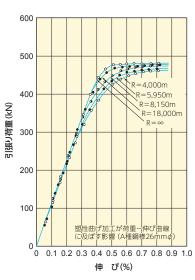

 ϕ 23mm A種鋼棒(圧延-ストレッチ鋼棒)および ϕ 32mm B種鋼棒(熱処理鋼棒)について測定した破断までの応力度-伸び曲線図の一例です。圧延ストレッチ鋼棒には明瞭な起伏点があらわれるのが特徴です。

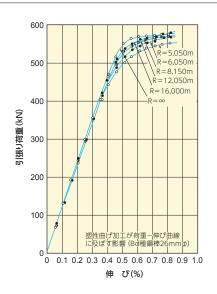
高温における機械的性質の変化

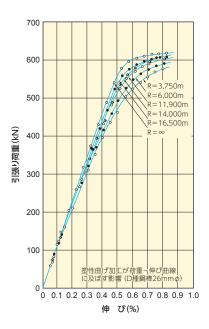
PC構造物が火災を受けたときのPC鋼棒の機械的性質の変化を判定するために行なった試験結果です。また高温にさらした後、常温にもどしたときの強度は表示のように400℃以下であればほとんど不変でほぼオリジナルの値に戻ることがわかります。



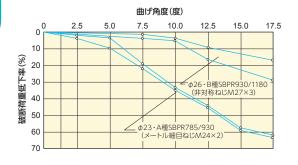
	熱処理		400℃加熱	600℃加熱			
	のまま	0.5分	5分	40分	10分	40分	
引張強さ N/mm²	1,383	1,388	1,393	1,393	1,162	1,098	
降伏点 N∕mm²	1,187	1,147	1,157	1,157	907	863	


3

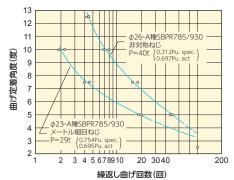

ガス切断による影響長さ


緊張後定着具より突出した余尺長を切断するのにガス 切断を使用すると、切断部よりある範囲内は焼きが 入って脆い材質になります。 ϕ 26mm鋼棒について 実験した結果では、切断に要する時間を大幅に変化させてありますが、焼きが入る範囲は切断面から7~8mm位です。切断工の技術によってもこの値は変わりますので、ガス切断は行なわないでください。

塑性曲げ加工の影響



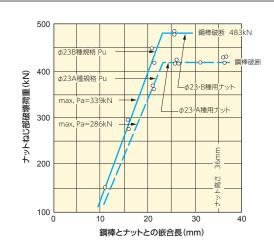
PC鋼棒の塑性曲げ加工はBar-Benderを使用して行なう必要があります。この場合でも、曲げ半径が小さいと弾性限、弾性係数などが低下しますので ϕ 26mm A種鋼棒ではR=5m、B種鋼棒ではR=6~7m、C種鋼棒ではR=8~10m程度が限界と考えられます。PC鋼棒が全長にわたって曲線配置されている場合には伸びの検定はその曲げ半径に合った弾性係数を用いて算用する必要があります。


5

PC鋼棒ねじ部角度定着引張試験結果の一例

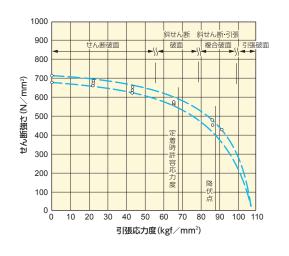
曲げ角度が5°をこえると強度が低下します。角度がついたまま保持するとクリープ破断を起こす危険性があります。角度がついた場合は必ずテーパー・ワッシャーで補正する必要があります。

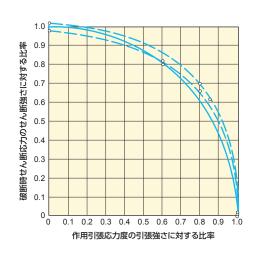
PC鋼棒(A種)ねじ部2方向繰返し角度定着試験結果


PC鋼棒のねじ部を2方向に一定荷重で角度定着をすると、少ない繰返し回数で破断します。

特にPC鋼棒を使って構造物を吊り上げる場合に注意 する必要があります。

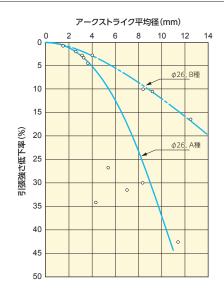
PC鋼棒、カップラー嵌合長さと破壊荷重との関係

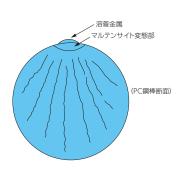

PC鋼棒ø23mmナット嵌合長さと破壊荷重との関係



--

PC鋼棒φ23mmA種:引張応力作用下におけるせん断強さ


引張力とせん断力を同時に受けたときの破断の状況を示したものです。



10

アークストライク径と引張強度低下の傾向 (φ26mm鋼棒の場合)

アークストライクを受けたときは、静的引張試験において 引張強さの低下率が少ないときも、経時的に破断すること があるのでたとえ小さなアークストライクであっても避け なければなりません。

主な営業品目

PC鋼より線

PC鋼より線

アンボンドPC鋼より線

プレグラウトPC鋼より線

内部充てん型エポキシ樹脂被覆PC鋼より線

内部充てん型エポキシ樹脂被覆高強度PC鋼より線

各種定着部品

PC鋼棒

一般PC鋼棒, ディビダーク工法用PC鋼棒 総ねじPC鋼棒 "ゲビンデスターブ"

プレグラウトPC鋼棒

各種定着部品

● ピアノ線

高級バネ用, 弁バネ用ほか

● オイルテンパー線

耐熱弁バネ用, 高級弁バネ用, 高強度バネ用

● 硬鋼線

一般バネ用、シートバネ用、シャッターバネ用ほか

- スチールコード タイヤ用, ベルト用, ホース用
- 放電カットワイヤー
- ソーワイヤー

◆ 住友電気工業株式会社

特殊線事業部 PC営業部 〒107-8468 東京都港区元赤坂1-3-13 TEL (03)6406-2811 FAX (03)6406-4035 特殊線事業部 PC技術部 〒664-0016 兵庫県伊丹市昆陽北1-1-1 TEL (072)771-0508 FAX (072)771-0502 特殊線事業部 PC技術部 〒107-8468 東京都港区元赤坂1-3-13 TEL(03)6406-2812 FAX(03)6406-4036